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ABSTRACT
Modern databases support queries that perform model inference
(inference queries). Although powerful and widely used, inference
queries are susceptible to incorrect results if the model is biased
due to training data errors. Recently, Rain [40] proposed complaint-
driven data debuggingwhich uses user-specified errors in the output
of inference queries (Complaints) to rank erroneous training ex-
amples that most likely caused the complaint. This can help users
better interpret results and debug training sets. Rain combined influ-
ence analysis from the ML literature with relaxed query provenance
polynomials from the DB literature to approximate the derivative of
complaints w.r.t. training examples. Although effective, the runtime
is O(|T|d), where T and d are the training set and model sizes, due
to its reliance on the model’s second order derivatives (the Hes-
sian). On a Wide Resnet Network (WRN) model with 1.5 million
parameters, it takes >1 minute to debug a complaint.

We observe that most complaint debugging costs are indepen-
dent of the complaint, and that modern models are overparameter-
ized. In response, Rain++ uses precomputation techniques, based
on non-trivial insights unique to data debugging, to reduce debug-
ging latencies to a constant factor independent of model size. We
also develop optimizations when the queried database is known
apriori, and for standing queries over streaming databases. Combin-
ing these optimizations in Rain++ ensures interactive debugging
latencies (∼10ms) on models with millions of parameters.
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1 INTRODUCTION
Modern database systems provide first-class support for ML model
inference, so that SQL queries can easily performmodel inference as
part of analytics queries [17, 27, 33]. For instance, Google BigQuery
integrates native TensorFlow support [27], SQLServer supports
ONNX models [9], and MadLib extends PostgreSQL using user-
defined functions and types [17]. Despite the increasing availability
and use of these inference queries, they are also more challenging
to debug as compared to traditional relational queries. This can be
exemplified by the following use case.
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Figure 1: Rain++ (this paper) reduces the time for complaint-driven
data debugging by over 7000× to support ∼10ms interactive debug-
ging. This complaint is over a join-count query that where the join
condition is M.predict(left) = M.predict(right).

Example 1 (Image Classification InferenceQuery). Consider
an online clothing retailer, where individual sellers upload images
and metadata about items to sell. For quality assurance purposes, the
retailer wants to cross check the metadata provided by the sellers. One
check verifies that the type of clothing in the uploaded image (e.g.
trousers or shirt) matches the information in the metadata.

Elliot, a data scientist, is tasked with creating and monitoring
an image recognition model to predict clothing type, and flagging
potential metadata errors using the model. Elliot monitors the number
of flagged entries with the streaming query:

SELECT hour(S.time_added), count(*)
FROM sellerdata AS S
WHERE clothingtype(S.image) != S.clothingtype
GROUP BY hour(S.time_added)

where clothingtype(·) is a model that takes an image as input
and outputs clothing type. As a sanity check, Elliot sets an alert that
triggers when the number of flagged items exceeds 500 within an hour.

However, should Elliot even believe the alerts? The unique chal-
lenge that inference queries introduce is that, even if the query
formulation and the streaming data are correct, the query output
can be still be wrong due to errors in the training data. Mislabeled
training examples, or noisy images, or incorrect training metadata
can all cause the model to become biased and mispredict, ultimately
affecting the inference query output.

Although many systems to debug non-inference queries [1, 28,
38, 39] and analytic workflows [36] exist, there are fewer options for
debugging training data when errors are identified in the outputs
of inference queries. Approaches such as data ‘unit tests’ attempt
to identify training data errors before training [3, 31]. Influence
analysis techniques [21, 30, 46] use labelled mispredictions to iden-
tify the training records that most contributed to the misprediction.
They do so for differentiable models by estimating the sensitiv-
ity (the gradient) of the prediction with respect to each training
example. However, neither of these approaches account for how
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the predictions are used as part of downstream analytics. Further,
end users do not have visibility into the dataflow process to even
provide label mispredictions. Ultimately, existing approaches do
not account for how the model predictions are used as part of the
query, nor their effects on the errors that the user identifies.

The recent Rain [40] system proposed complaint-driven training
data debugging. Given a user’s specification of errors in the infer-
ence query result (a complaint), Rain ranks training examples based
on their effect on the complaint if deleted. This functionality can
be used for model interpretation, by returning relevant training
examples that affected a query result, or for training set debugging,
by identifying erroneous training examples based on query errors.
For example, if Elliot complains that the flagged count in the current
hour is too high, Rain ranks training examples on their tendency
to reduce the count if removed from the training set.

It is impractical to individually remove each training example, re-
train the model, and rerun the query. Thus, Rain leverages influence
functions, a form of influence analysis, to approximate the effects
of retraining on differentiable ML models (e.g., logistic regression,
neural networks). To support SQL queries, which are inherently
not differentiable, Rain proposes a provenance-based relaxation of
SPJA queries [13]. In short, Rain combines the sensitivity of model
predictions to the training examples with the sensitivity of the
query result to model prediction probabilities to construct an end-
to-end differentiable pipeline. Rain showed that these techniques
can identify erroneous training examples far more accurately than
prior approaches. Unfortunately, it has performance and scalability
challenges that limit its use to small models and training datasets.

Complaint-driven debugging is typically initiated from a data
visualization, where the user can easily see anomalies and interac-
tively annotate and specify them as complaints. In this context, it is
crucial that the debugging system responds at interactive timescales
to not impede the user’s analysis flow [25]. However, as shown in
Figure 1, Rain’s responsiveness quickly degrades beyond models
containing a few thousand parameters. Unfortunately, modern deep
neural network (DNN) models, such as Wide Residual Networks
(WRN) used in image classification, can have hundreds of thousands,
or millions or parameters. At such scales,Rain takesminutes to iden-
tify and rank erroneous training records for a complaint, whereas
our goal is to debug at interactive time scales (< 100ms [12, 26]).

Rain’s poor scalability arises from the cost of estimating two
types of model sensitivities. The first type is the sensitivity of the
model parameters to removing examples from the training set. In-
stead of analyzing the sensitivity of the loss function directly, which
requires retraining the model and rerunning the query, Rain uses a
quadratic Taylor approximation of the loss function that is faster.
However, it still requires computing the second order derivative
(the Hessian) which is expensive. The second type is the sensitiv-
ity of model predictions (and the inference query) to changes in
the model parameters, whose computation cost increases with the
model size. Rain also proposed optimizations to approximate the
effects of training set deletions on the relaxation of the query with-
out materializing the quadratic approximation of the loss function.
Unfortunately, for a training set of size |T| and d model parameters,
Rain still costs O(d|T|), which is untenable for non-trivial models.

Our work builds on three insights. First, a significant amount of
computation can be pushed offline by precomputing the quadratic

approximation of the loss function (Section 2.4). However, a naive
approach requires considerable space and only reduces latency by a
constant factor. Thus, our second insight is to build space-efficient
approximations of the model loss function that only rely on a tiny
subset of the model parameters (Section 3). Although conventional
wisdom towards loss function approximation is to choose parame-
ters that are most sensitive to training set perturbations, we show
that the exact opposite is true for influence-based complaint debug-
ging. Namely, that the more sensitive a model parameter is, the less
the model relies on it when making predictions—in other words,
the less it contributes to debugging! In fact, including sensitive pa-
rameters introduces numerical instabilities that degrade debugging
quality. Finally, we observe that, rather than compress the model
parameters directly, it is even more effective to directly compress
the quadraic approximation of Rain (Section 3).

Rain++ uses these insights to precompute a small number of
eigenvalues and eigenvectors of the loss function’s inverse Hessian.
While matrix compression traditionally computes the largest eigen-
values, we show counter-intuitively that the smallest eigenvalues
are most appropriate for training data debugging (Section 3). We
further develop optimizations when the inference database or the
inference query is known apriori (as in Example 1). The former
precomputes gradients for inference DB tuples that accelerate any
future inference query, while the latter incrementally maintains
the query gradient as new batches of records are inserted.

These optimizations reduce complaint debugging latency by
>7000× from over 1 minute to ∼10ms (Figure 1). The precomputa-
tion costs are modest: less than 30 minutes for a WRN-26 neural
network model with 1.5M parameters. Beyond scalability, Rain++
addresses two additional limitations in Rain. First, Rain relies on
access to the model training infrastructure (training dataset, model
definition, and parameters) in order to compute the above derivaties
and gradients. However, model users rarely have access to this in-
frastructure. Complaint-driven debugging can be solely performed
on the data structures that we propose to precompute, which obvi-
ates the need for this access. Second, Rain assumes that deleting
errors is always appropriate. However, this is both undesirablewhen
training records are sparse, and incorrect if the errors cannot be
fixed by deletions. We propose extensions to support updated-based
interventions and illustrate in the experiments how the correct in-
tervention choice is crucial for training data debugging.
To summarize, our contributions include:

• Offline precomputation techniques that both speed up complaint-
driven debugging and improve numerical stability.
• Offline precomputation techniques when the inference database
is know a priori (e.g., a published dashboard).
• Maintenance-based optimizations for streaming queries where
new batches of data are inserted into the inference database.
• Extension of the Rain problem formulation to support interven-
tions that fix, rather than delete, erroneous training examples.
• Extensive evaluations using image (MNIST, FASHION-MNIST,
CIFAR10), text (SST2), and tabular (ADULT) datasets, and a vari-
ety of linear and neural network models (CNNs, Feed Forward
Nets, Logistic Regression, WRNs, LSTMs). Rain++ has compa-
rable or better debugging accuracy, >7000× lower latency, and
supports non-deletion interventions.
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• In-depth analysis of the conditions when complaint-based de-
bugging can be expected to be effective. We find evidence that
complaints based on queries whose outputs significantly incor-
rect are more likely to accurately identify training errors, which
matches the settings when an end-user will identify and sub-
mit a complaint. Critically, we show that knowing how a
model is used in the downstream application is critical to
accurate and efficient data debugging. This is leveraged in
other problem areas such as domain adaptation [47] in the ML
literature, but rarely applied in the data cleaning literature.

2 BACKGROUND AND CHALLENGES
In this section we first present the debugging problem solved by the
authors of [40], then we describe how they use influence functions
and query gradients to address it. We then highlight the perfor-
mance bottlenecks addressed in the subsequent sections.

2.1 Problem Overview
An inference query Q is a Select-Project-Join-Aggregation (SPJA)
query whose expressions may include model inference calls inside
the SELECT, WHERE, GROUP BY clauses, or within inside ag-
gregation functions (e.g., SUM, COUNT, and AVG). The modelM
has already been trained on a training set T . Given the inference
database D, the database whereM is applied on for prediction,
Q(D,T ) executes the query over D.

The user can complain about errors he or she observes by defin-
ing violated constraints over the the output of Q(D,T ). In Ex-
ample 1, Elliot, seeing the number of flagged errors increase, can
indicate that the aggregation count of the current hour should be
lower than its current value. Rain supports many types of com-
plaints like specifying that a tuple should not exist in Q(D,T ) or
that attribute of a tuple in the output, like our aggregation count
in Example 1, should be higher, lower or equal to a target value.
In all cases we can think of user complaints as boolean functions
on the query output that return true if and only if the complaint is
resolved. We will use C(Q(D,T )) to denote the boolean output of
a complaint C for the output Q(D,T ).

Given a complaint C, Rain aims to help the user identify the
smallest set of modifications to the training set T so that the com-
plaint on Q is resolved. Focusing on deletions of training examples,
the authors of [40] define the problem as follows.

Problem 1. (Complaint-driven Training Data Debugging) Given a
training set T , a inference databaseD and a queryQ and a complaint
C, the goal is to identify the minimum set of training records such
that if they were deleted, the complaint would be resolved:

min
∆⊆T

|∆| : C(Q(D,T – ∆)) = True

While Rain [40] focused on deletions, Section 5.3 extends the
formulation to support a library of custom interventions (e.g., image
denoising).

Rain proposed a heuristic solution to this generally intractable
problem. Instead of returning a candidate set for deletion, Rain
returns a ranked list of training examples of T . Training examples
at the top, if removed from T one by one should push the output of
Q towards satisfying C. In Example 1, Rain highly ranks training

examples ofM that most reduce the flagged count if removed from
the training set.

Even this more tractable version of the problem remains pro-
hibitive as it requires training |T | models. To sidestep this, the
authors of [40] focus on differentiable models where tools from in-
fluence functions [21, 37] allows one to approximate retraining. We
will discuss next the fundamentals of these techniques. Our work
on Rain++ operates on the same principles albeit with a different
implementation as we shall see in Section 4.

2.2 Influence Functions
Given a differentiable model like a neural network, there is no
closed form solution for the optimal parameters of the training loss
functions and thus we cannot just incrementally update them in
response to a deletion of a training example. The influence functions
framework [37] works around this limitation by constructing a
surrogate loss function for which a closed form solution exists
and then uses it to derive an approximate solution. In particular,
quadratic functions h(ϑ) are useful surrogate functions because
they have closed form solutions to compute the minimizers ϑ∗h

h(ϑ) = aϑ2 + bϑ + γ ϑ∗h = –
b
2a

.

Modifications to h like adding a linear function g(ϑ) = rϑ + s can be
easily handled as well with an incremental formula

ϑ∗h+g = ϑ∗h –
g′(ϑ∗h)
h′′(ϑ∗h)

= ϑ∗h –
r
2a

= –
b + r
2a

. (1)

Now let us turn to how we can reduce complex optimization prob-
lems to the easy cases above. Let zi = (xi, yi) be the i-th training
example of T , composed of pair of a feature vector xi and its corre-
sponding label yi. Let ℓ(ϑ, z) return the loss of a training example z
for a model with parameters ϑ. We define our loss function and its
minimizer

L(ϑ) =
|T |∑
i=1

ℓ(ϑ, zi) ϑ∗ = argmin
ϑ

L(ϑ).

Let us suppose that we want to estimate the effects of adding a
training example z = (x, y). We need to compute

ϑ∗new = argmin
ϑ

{L(ϑ) + ℓ(ϑ, z)}.

The influence function framework reduces L(ϑ) and ℓ(ϑ, z) to the
quadratic surrogate function above by computing their Taylor series
approximation

L(ϑ) ≈L(ϑ∗) + ⟨∇ϑL(ϑ∗), ϑ – ϑ∗⟩ + 1
2
(ϑ – ϑ∗)THϑ∗ (ϑ – ϑ∗)

ℓ(ϑ, z) ≈ℓ(ϑ∗, z) + ⟨∇ϑℓ(ϑ∗, z), ϑ – ϑ∗⟩

where the Hessian matrix Hϑ∗ is the second derivative of L(ϑ). Now
applying the multivariate version of Equation (1) we get

ϑ∗new ≈ ϑ∗ – H–1
ϑ∗∇ϑℓ(ϑ

∗, z). (2)

For our setting we are not interested in ϑ∗new itself but in functions
computed over its output predictions (such as the output of Q that
the complaint is specified over). Rain reduces the complaints to a
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differentiable function of the model parameters q(ϑ) by computing
the first order Taylor approximation of q

q(ϑ∗new) ≈ q(ϑ∗) – ∇ϑq(ϑ∗)H–1
ϑ∗∇ϑℓ(ϑ

∗, z). (3)

Naively evaluating the formula is still infeasible. Given a model
with d parameters (ϑ ∈ Rd), simply inverting the Hessian already
takes O(d3) time and O(d2) space where d can be 106 or more for
state of the art neural network architectures.

The good news is that even though we need to evaluate Equa-
tion (3) once for every training example intervention ℓ(ϑ∗, z), we
can share the computation of ∇ϑq(ϑ∗)H–1

ϑ∗ across all interventions.
The problem thus boils down to solving a single system of linear
equations over the unknown vector w ∈ Rd

Hϑ∗w = ∇ϑq(ϑ∗). (4)

Yet again, this linear system is still impractical to solve exactly. [21]
observes that approximately solving Equation (4) amounts to find
an approximate minimizer of the following function

µ(w) = wTHϑ∗w – ⟨∇ϑq(ϑ∗), w⟩.

The benefit of this formulation is that ∇wµ(w) = Hϑ∗w – ∇ϑq(ϑ∗)
can be easily computed without materializing Hϑ∗ . Automatic dif-
ferentiation frameworks (e.g. Tensorflow) can compute Hϑ∗w given
a vector w in O(|T |d) time. The Conjugate Gradient (CG) algorithm
[18] can then solve the problem exactly using d calls to ∇wµ(w).
In practice [21] finds that a constant number of evaluations yields
an empirically sufficient approximation. Despite all these improve-
ments we find in our experiments that this step remains the key
bottleneck of the approach of [21] and thus Rain, taking more than
a minute for a 26 layer Wide Residual Network.

2.3 Query Gradients via Provenance
In this subsection we will outline how Rain translates the com-
plaint C and query Q into a differentiable function q(ϑ) of the
model parameters as required by Equation (3). Notice that this step
is required because the inference query Q depends on the discrete,
also known as hard, predictions of the modelM which are not dif-
ferentiable. Rain analyzes Q using provenance polynomials [2, 13]
to construct a symbolic representation of the query results. Specifi-
cally for an aggregation result this analysis returns a formula that
takes the model predictions as input and returns the aggregation
result as output. For the case of Example 1, for a tuple i we denote
S[i] the clothing type registered in table S,M(i) the model predic-
tion and hour_added(i) the hour added it was added. Then for the
aggregation result for hour h the formula is∑

hour_added(i)=h

∑
j≠S[i]

1M(i)=j.

where1 is the indicator function. Similar analyses can be performed
for non aggregation results as well. Unfortunately this formula is
still not differentiable because it still depends on the hard predic-
tions. To side step this Rain replaces the hard predictions with
the probabilities of each prediction in the inference data estimated
byM, and replaces boolean operators (AND, OR and NOT) with
continuous alternatives. Since the model now emits probabilities
for all classes, rather than for the single predicted class, the differ-
entiable function is over the space of all prediction probabilities

P(ϑ) ∈ RV×R, where V is the total number of model predictions and
R is the number of model classes. This process transforms C to a
differentiable function f of P(ϑ):

C(Q(D,T ))→ q(ϑ) = f(P(ϑ)). (5)

Revisiting Example 1, Elliot’s potential complaint that the output
for hour h should be smaller is translated to the complaint that the
following differentiable function should have a smaller value

q(ϑ) =
∑

hour_added(i)=h

∑
j≠S[i]

pij(ϑ).

2.4 Limitations
To put the pieces together, Rain computes the relaxed provenance
polynomial q(ϑ), and then uses conjugate gradients algorithm to
estimate ∇ϑq(ϑ)H–1

ϑ . The result is then multiplied with ∇ϑl(ϑ, z) for
every training record, to compute the ranking criteria.

The primary bottleneck is computing the first and second or-
der model derivatives, especially when d is large, since they are
needed when calculating ∇ϑq(ϑ∗), the Hϑ∗w computations for the
Conjugate Gradient algorithm, as well as ∇ϑl(ϑ∗, z) for all training
examples in T . The resulting complexity of the algorithm, even if
we ignore the calculation of ∇ϑq(ϑ∗), is O(|T |d). Thus, Rain will not
remain interactive when used for models with many parameters,
or trained on large training sets.

Fundamentally, a complexity of O(|T |d) should be expected for
any solution to Problem 1 – a solution must, at minimum, evaluate
M over all training examples in order to return a ranking. To
go beyond constant factor improvements over Rain, a significant
portion of the computation workload needs to be made complaint
independent, meaning it is independent of the user’s query Q and
can thus be pushed offline.

Unfortunately naively doing so ends up bringing constant factor
improvements at best. Computing Hϑ∗ or its inverse offline would
end up hurting Rain’s performance: Even reading the Hessian or
its inverse takes O(d2) which is slower than O(|T |d) for most state
of the art neural net architectures. Another approach would be to
calculate offline and store H–1

ϑ∗∇ϑℓ(ϑ
∗, z) for every training example

z in T . While we avoid a significant amount of first and second
order derivatives at online time, this amounts to only a constant
factor improvement since the online complexity remains O(|T |d).
On top of that, the offline cost can be prohibitive, requiring O(d|T |2)
time and O(|T |d) space. Clearly neither approach is practical.

3 INSIGHTS FROM OPTIMIZATION
The critical challenge in this paper is computing H–1

ϑ∗∇ϑℓ(ϑ
∗, z) for

all z in T using less than O(d|T |2) time and O(d|T |) space. It is also
unrealistic to solve one linear system at a time within interactive
latencies, our goal is to compress H–1

ϑ∗ and quickly process each z.
Given a matrix operation A · b where A is a square matrix, the

predominant way to compress A is low rank factorization [8]. This
keeps the top eigenvalues and eigenvectors of A, which captures
the set of vectors b where A · b most sensitive. This ensures that
the accuracy along those sensitive directions will be high.

Despite these guarantees, low rank factorization is not appropri-
ate due to interactions between A = H–1

ϑ∗ and b = ∇ϑℓ(ϑ∗, z) unique
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to our problem. This section provides intuition for why Rain++
instead compresses H–1

ϑ∗ using its smallest eigenvalues and their
eigenvectors.

First, the smallest eigenvalues are most accurate for representing
the effects of training set changes on the model predictions. In fact,
recent work in deep learning optimization suggests that state-of-
the-art neural networks training loss gradients are concentrated on
the subspace spanned by the smallest eigenvectors of H–1

ϑ∗ [14]. We
illustrate this using a simple example based on a linear regression
model with four training examples. The features X and targets y of
the model are the following

X =


x1
x2
x3
x4

 =

1 0
–1 0
0 10–3
0 –10–3

 y =


y1
y2
y3
y4

 =

1
3
1
3


If ϑ = (ϑ1, ϑ2) are the two featureweights of themodel, then training
the model amounts to minimizing the squared loss

L(ϑ) =
4∑
i=1

ℓ(ϑ, zi) =
4∑
i=1

(⟨xi, ϑ⟩ – yi)
2

= (ϑ1 – 1)2 + (–ϑ1 – 3)2 + (10–3ϑ2 – 1)2 + (–10–3ϑ2 – 3)2

= 2ϑ21 + 4ϑ1 + 10 + 2 · 10–6ϑ22 + 4 · 10–3ϑ1 + 10

The optimal parameters are ϑ∗ = (–1, –103), and inverse Hessian is

H–1
ϑ∗ =

[
𝜕2L(ϑ)
𝜕2ϑ1

𝜕2L(ϑ)
𝜕ϑ1𝜕ϑ2

𝜕2L(ϑ)
𝜕ϑ2𝜕ϑ1

𝜕2L(ϑ)
𝜕2ϑ2

]–1
=
[
4 0
0 4 · 10–6

]–1
=
1
4

[
1 0
0 106

]
.

The top eigenvector of H–1
ϑ∗ is (0, 1) with eigenvalue 0.25 · 106. For

training example zi = (xi, yi), its training gradient is ∇ϑℓ(ϑ∗, zi) =
2(⟨xi, ϑ∗⟩ – yi)xi. Thus for z1 and z3 we have

∇ϑℓ(ϑ∗, z1) =
[
–4
0

]
∇ϑℓ(ϑ∗, z3) =

[
0

–4 · 10–3
]
.

Examples z2 and z4 have the same gradients as z1 and z3 albeit
with opposite signs. Note that the gradients of all of these examples
are concentrated around the inverse Hessian’s bottom eigenvector
(1, 0) direction, rather than the top eigenvector. Thus, multiplying
the smallest eigenvalues of H–1

ϑ∗ with the loss gradients will more
accurately approximate H–1

ϑ∗ ∇ϑℓ(ϑ
∗, z).

In general, it’s a problem if model predictions rely heavily on
model parameters that are overly sensitive to small training set
changes, which are precisely captured by the directions of the
largest eigenvectors of H–1

ϑ∗ .
Second, the largest eigenvalues greatly reduce, rather than im-

prove, the accuracy of influence function approximations. Suppose
we add a new training example z5 with x5 = (0, 1) and y5 = 1. The
new loss term (ϑ2 – 1)2 in L(ϑ) dominates all existing ϑ2 terms. The
new optimal parameters should be ≈ (–1, 1), yet our approximation
using Equation (2) is wildly off

ϑ∗new ≈ ϑ∗ – H–1
ϑ∗∇ϑℓ(ϑ

∗, z5) ≈
[

–1
5 · 108

]
.

The reason is that influence functions employ a Taylor approxima-
tion that is accurate only in a small neighborhood of the original
solution ϑ∗. Sensitive parameters like ϑ2 can change considerably
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Figure 2: Caching the top-k Hessian eigenvalues for MNIST and CI-
FAR10 (with K ≈ 10) is sufficient for influence functions.

when the training set is perturbed, and render the Taylor approxi-
mations highly inaccurate.

Third, accurately estimating the top eigenvalues themselves suf-
fers from numerical stability issues. Modern NN architectures, such
as computer vision models, are low rank, and 99.99% of the eigenval-
ues are near-zero [11]. Since the eigenvalues of the inverse Hessian
are reciprocal to the ones of the Hessian, calculating the top eigen-
values of the inverse suffers from numerical stability issues.
Looking ahead: The above points highlight that large eigenval-
ues of the H–1

ϑ∗ should not be used for influence analysis, and that
the smallest eigenvalues should instead be used. Further, Figure 2
shows that 10-15 eigenvalues are sufficient to store for even million-
parameter models. Surprisingly, in addition to its performance ben-
efits, this also improves the approximation accuracy and robustness
compared to computing and using the full inverse Hessian matrix.

4 OUR APPROACH
Aswe discussed in Section 3, Rain++ computes H–1

ϑ∗ ∇ϑℓ(ϑ
∗, z) for all

z in T offline to accelerate the online evaluation of Equation (3). The
basis of our implementation is the approximation of H–1

ϑ∗ through
the top eigenevectors of Hϑ∗ . Let vi and λi be the eigenvectors of
Hϑ∗ in descending order. Rain++ computes only the top-k vi and λi
to replace Hϑ∗ in Equation (3) with the following surrogate

H̃ϑ∗ =
k∑
i=1

λivivTi .

The matrix above would coincide with the exact Hessian for the
choice of k = d. The crux of our implementation is to approximate
the H–1

ϑ∗ ∇ϑℓ(ϑ
∗, z) while materializing as few of its intermediates of

the computation as possible. Rain++ computes the top-k vi and λi
without first materializing the uncompressed Hϑ∗ . H–1

ϑ∗ ∇ϑℓ(ϑ
∗, z)

is then computed directly in a compressed format without needing
to materialize ∇ϑℓ(ϑ∗, z) first. Further, we will remark on heuristics
to estimate k – in our experiments, k is on the order of 10 or 15, as
compared to the >106 model parameters.

4.1 The Lanczos Algorithm
Given Hϑ∗ , computing its top-k eigenvalues and eigenvectors would
be a straightforward task using any linear algebra library. As we
have noted before though, even computing the full Hessian would
take O(|T |d2) time which in practice would be prohibitive.

The Lanczos Algorithm [23] is a generalization of the CG al-
gorithm that allows us to compute eigenvalues and eigenvectors
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of Hϑ∗ without requiring access to Hϑ∗ (recall that CG was used
to simply compute ∇ϑq(ϑ∗)H–1

ϑ∗ ). Similar to CG, the Lanczos Algo-
rithm only requires access to an oracle that, given a v, computes
Hϑ∗v. This again can be done using backpropogation in an auto-
differentiation framework such as TensorFlow. For k ≪ d, |T | as
we discussed, the complexity of this algorithm is O(k|T |d).

4.2 Gradient Compression
Replacing Hϑ∗with H̃ϑ∗ in Equation (3) we get

q(ϑ∗new) ≈ q(ϑ∗) – ∇ϑq(ϑ∗)
k∑
i=1

1
λi
vivTi ∇ϑℓ(ϑ

∗, z).

We can reorganize the expression using vector notation to highlight
the opportunity to compress H–1

ϑ∗ ∇ϑℓ(ϑ
∗, z):

q(ϑ∗new) ≈ q(ϑ∗) –
k∑
i=1
⟨∇ϑq(ϑ∗), vi⟩

1
λi
⟨vi,∇ϑℓ(ϑ∗, z)⟩. (6)

The compressed version of H–1
ϑ∗ ∇ϑℓ(ϑ

∗, z) that Rain++ stores is thus

bz ←−
[
1
λ1
⟨v1,∇ϑℓ(ϑ∗, z)⟩, · · · ,

1
λk
⟨vk,∇ϑℓ(ϑ∗, z)⟩

]
.

Observe that bz has size k much smaller than the uncompressed d.
Computing all the bz gives rise to a time-space trade-off. Comput-

ing large batches of ∇ϑℓ(ϑ∗, z) to leverage GPU parallelism requires
large amounts of GPU memory, a limited resource. The situation
is more dire compared to model training since we compute one d
dimensional gradient for each training example in the batch and not
one gradient for the whole batch as in stochastic gradient descent.

Rain++ computes the ⟨vi,∇ϑℓ(ϑ∗, z)⟩ directly without materializ-
ing ∇ϑℓ(ϑ∗, z). To reduce the number of variables during gradient
computation, Rain++ views the calculation of each of the k projec-
tions as the derivative of a function of one scalar variable h

⟨vi,∇ϑℓ(ϑ∗, z)⟩ =
𝜕ℓ(ϑ∗ + hvi, z)

𝜕h

���
h=0

.

Backpropagation here ends up calculating ∇ϑℓ(ϑ∗, z) and projecting
it to vi which does not help. Forward mode differentiation [5], avail-
able in frameworks like Tensorflow, can calculate ⟨vi,∇ϑℓ(ϑ∗, z)⟩
on the fly while evaluating ℓ(ϑ∗, z). As a result ∇ϑℓ(ϑ∗, z) is never
materialized. The dramatic memory reduction allows for signifi-
cantly larger batch sizes that more than make up the cost of the
k ≪ d passes needed, one for each vi.

Storing the k vectors vi, and bz for each training example z,
reduces space complexity from O(|T |d) to O(kd + k|T |). Given
∇ϑq(ϑ∗), they also reduce the online computation of Equation (6)
for all training examples from O(|T |d) in Rain to O(kd + k|T |). In
our experiments, for a WRN-26 model of 1.5M parameters and 50K
training examples, setting k = 20 our technique reduces the cost
by one order of magnitude. For this setting, our forward mode
based gradient compression is 4 times faster than computing the
uncompressed gradients with backpropagation.

4.3 Choosing the number of eigenvalues
It is clear that the choosing the right number of eigenvalues k is
critical for Rain++. Given that there is no uniform choice of k that
works for all datasets, it is important to design heuristics to identify

an appropriate setting. Prior work [14] already suggests that for
many deep learning architectures the number of dominant eigenval-
ues of the Hessian is a small multiple of the number of classes of the
classification task at hand. To refine this rough estimate, we need
to determine the location of the last dominant eigenvalue. As we
can see in Figure 2, at the beginning of the spectrum of the Hessian
eigenvalues decrease rapidly with λi+1/λi being significantly lower
than one. This behaviour continuous until we reach an inflection
point after which the drop-off stops and λi+1/λi spikes to a value
close to one. Our heuristic chooses initializes k to the number of
classes, which is 10 for the case of Figure 2 and then scans the
spectrum to identify the first inflection point. In our experiments,
we observe that the chosen k consistently achieves performance
that is close to the optimal choice.

5 OPTIMIZATIONS AND EXTENSIONS
The previous sections focused on pushing the computations of first
and second order derivatives ofM over the training set offline. In
our discussions we have ignored the cost of computing ∇ϑq(ϑ∗)
which can become the new bottleneck given our optimizations. In
this section we discuss two optimizations to address this.

5.1 Known inference database
One of the key cases where Rain++ can accelerate the computation
of∇ϑq(ϑ∗) is when the inference databaseD is known offline. As we
saw in Equation (5), Rain relaxes the complaints C in differentiable
functions q that operate on top of the V × R matrix of prediction
probabilities P(ϑ) of each inference ofM overD. An element pij(ϑ)
of P(ϑ) corresponds to the probability of class j assigned to the i-th
inference example of D. Using the multi-variate chain rule on the
equality of Equation (5) we get

∇ϑq(ϑ∗) =
V∑
i=1

S∑
j=1

𝜕f(P(ϑ∗))
𝜕pij

∇ϑpij(ϑ∗). (7)

Equation (7) decomposes the sensitivity of the relaxed complaint
q in two distinct factors. The first one is the sensitivity of q to the
changes of the probabilities in P(ϑ) expressed by 𝜕f(P(ϑ∗))/𝜕pij. The
second is the sensitivity of the prediction probabilities to model
parameter changes ∇ϑpij(ϑ∗). Equation (7) also shows that despite
the fact that there is an infinite number of potential complaints, all
complaint gradients can be expressed as a linear combination of a
finite base of the VR gradients ∇ϑpij(ϑ∗).

This gives a concrete approach towards accelerating the com-
putation of ∇ϑq(ϑ∗). We can compute offline all the VR gradients
∇ϑpij(ϑ∗) as well as the matrix P(ϑ∗). During the online computa-
tion, we can construct the function f that corresponds to the user’s
complaint. Since 𝜕f(P(ϑ∗))/𝜕pij depends only on P(ϑ∗) and the com-
plaint and ∇ϑpij(ϑ∗) is already computed, we can compute ∇ϑq(ϑ∗)
without requiring any additional model inference or derivative.

Unfortunately it is prohibitive to store ∇ϑpij(ϑ∗) for large models
as it takes O(VRd) space. However the computation of Equation (6)
requires only the k projections ⟨∇ϑq(ϑ∗), vi⟩. Applying this projec-
tion to Equation (7) we get

⟨∇ϑq(ϑ∗), vi⟩ =
V∑
i=1

S∑
j=1

𝜕f(P(ϑ∗))
𝜕pij

⟨∇ϑpij(ϑ∗), vi⟩. (8)
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Thus storing only ⟨∇ϑpij(ϑ∗), vi⟩ is sufficient, reducing space to
O(VRk). The eigenvectors vi are also no longer required for the
online computation so only O(VRk + k|T |) space is needed which
is independent of d. This applies to the online time complexity
as well where given 𝜕f(P(ϑ∗))/𝜕pij, we only require O(VRk + k|T |).
In Figure 7 we show that this optimization can reduce the cost
of computing ∇ϑq(ϑ∗) by three orders of magnitude. For WRN-
26 model of 1.5M parameters and V = 10K, R = 10 and k = 20
using forward mode gradient compression is 12 times faster than
just calculating the gradients with backpropagation. The increased
speed up compared to Section 4.2 is because for each example
i backpropation does a single forward pass to compute all class
probabilities pij(ϑ∗) but needs to do one backward pass for each
class to compute all ∇ϑpij(ϑ∗). In contrast, forward mode calculates
⟨∇ϑpij(ϑ∗), vi⟩ for all j in a single forward pass.

5.2 Streaming queries
In Section 1, we discussed another important setting where interac-
tive response times are critical, the case where there is an incoming
stream of inference examples. Although Equation (8) is in theory
always applicable, as the stream increases in size, computing the
projections of ∇ϑq(ϑ∗) from scratch becomes increasingly more
costly. In this section we will discuss how we can incrementally
update ∇ϑq(ϑ∗) for complaints over streaming queries.

For simplicity, we focus on a streaming aggregation query Q.
Let us assume that we start with an inference database D and after
a single tuple insert we get a database D ′. Since SPJA queries are
incrementally maintainable, we know that there is a query ∆Q,
a delta query as it is usually called, that efficiently computes the
difference in the value of Q

∆Q = Q(D ′M ) – Q(DM ).

∆Q is itself an SPJA query that Rain can analyze and relax just
like it would do for the original queryQ. Let h(ϑ) be the relaxation of
Q(DM ), ∆h(ϑ) be the relaxation of ∆Q and h′(ϑ) be the relaxation
of Q(D ′M ). The relaxation of Rain preserves addition so we have

∇ϑh′(ϑ∗) = ∇ϑh(ϑ∗) + ∇ϑ∆h(ϑ∗).
Given ∇ϑh′(ϑ∗) and h′(ϑ∗), which we can compute by a similar
addition rule, we can compute any complaint gradient on top of
Q(D ′M ) via the chain rule. Thus to the extent that ∆Q depends
only on a small number of model inferences, we can incrementally
compute the complaint gradient ∇ϑq(ϑ∗) efficiently. As a canonical
example, in Figure 8 we will study the case of streaming class
frequency counts. For this case, the update cost depends on the
only on the size of the incremental update which allows Rain++ to
scale to very large databases D.

5.3 Non-Deletion Interventions
The above discussion is focused on the context where query com-
plaints (and the model mispredictions) can be fixed by deleting
corrupted training examples. However, there may be other valid
interventions. For instance, the user may wish to apply a low-pass
filter to fix images with random or salt-and-pepper noise, or to
set erroneous numerical attributes to a default or median value. In
addition, when the set of relevant training records is limited (e.g.,
there are few examples for a given class), deleting the corrupted

records is undesirable as it reduces the effective number of samples
that are available for training.

We now describe a simple extension to the problem formulation
to support interventions that update a training example z to z′.
Such interventions can change the features, the label, or both. We
can model this as deleting z and adding z′

ϑ∗new = argmin
ϑ

{L(ϑ) – ℓ(ϑ, z) + ℓ(ϑ, z′)}

Following the similar derivation steps as in Section 2.2 produces
the following approximation

q(ϑ∗new) ≈ q(ϑ∗) – ∇ϑq(ϑ∗)H–1
ϑ∗

(
∇ϑℓ(ϑ∗, z) – ∇ϑℓ(ϑ∗, z′)

)
.

Thus, Rain can use the optimizations described in this paper to
approximate the effects of any per-record intervention, and rank
them based on how well they address the query complaint. In our
experiments, we show the importance of corruption-relevant inter-
ventions on query complaints. We implement this by precomputing
the interventions on all training records, along with their corre-
sponding offline data structures. We leave policy decisions, such
as how to choose interventions to consider, as well as techniques
that avoid applying and materializing all possible interventions, to
future work.

6 EXPERIMENTS
Our experiments seek to understand how the number of materi-
alized eigenvalues affects Rain++’s debugging quality, offline, and
online runtimes. Our comparisons against the baseline Rain system
finds that Rain++ maintains or improves debugging quality and
reduces online runtimes by orders of magnitude, while required
modest amounts of offline precomputation times. We further study
the characteristics of complaints, as well as types of intervention,
that affect debugging quality.

6.1 Experimental Settings
The optimal number of eigenvectors k depends on the hessian’s
spectral properties, which varies based on datasets, tasks and model
architectures. Thus we vary these three dimensions.

6.1.1 Datasets & Models. Scalability becomes a major factor as the
number of model parameters increases. Thus we focus on settings
that use deep neural networks (DNNs).We use 3 object classification
image datasets, and a sentiment analysis NLP dataset. We also use a
tabular dataset to show that Rain++ is competitive even on models
with fewer parameters that are not overparameterized.
• MNIST [24] contains 70k gray scale 28×28 pixel images of hand-
written digits 0-9. 60k are used for training and 10k for testing.
The model classifies each image with the depicted diget. We traied
three models: a logistic regression model with 7850 parameters,
a two layer feed-forward network with 1.8M parameters, and a
three layer CNN with 1.2M parameters.

• Fashion-MNIST [43] is a harder version of MNIST. It has the
same number of image dimensions, but the images are of clothing
from 10 clothing classes. We use the same models as MNIST.

• CIFAR-10 [22] contains 60k 32×32 color images of 10 different
object classes; 50k are used for training. For this classification task,
we use three Wide Residual Network (WRN) models [45] with 10,
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18 and 26 layers (390K, 778K and 1.55M parameters respectively).
This is a harder task thanMNIST and Fashion-MNIST.

• SST-2 [32], or the Stanford Sentiment Treebank v2, is a binary
sentiment analysis dataset. The training set contains 67349 sen-
tence fragments labelled as positive or negative sentiment. For
this binary classification task, we use a LSTM based classifier
with 3.4M parameters.

• ADULT [7] is a tabular dataset that predicts whether a person
makes more or less than 50K$ per year, given their census in-
formation. DNNs often fail to offer competitive performance on
tabular datasets as compared to simpler alternatives like linear
models or decision trees [29]. We thus use a logistic regression
classifier with 50 parameters.

6.1.2 Training Set Errors. Training examples can have errors in
the features, labels, or both; the errors can be random or systematic
over the training set. We generate systematic corruptions by choos-
ing a subset of the training set that satisfies a feature or label-based
predicate, and adding errors to a random subset of those examples.
Random corruptions are uniformly distributed in the dataset. Ta-
ble 2 and Table 3 summarize the corruption and rates we use for
label and feature-based corruptions.
• Class-conditional Label Error chooses a class from the train-
ing set, and flips a percentage (the corruption rate) of those labels
to another class. For example, we flip 40% of MNIST ‘1’ labels to
‘7’ ultimately corrupts 4% of the total training set. We vary the
corruption rates in 10% increments.

• Feature Noise adds Salt & Pepper and gaussian blur to a ran-
dom or systematic subset of the image training examples. Salt
& Pepper randomly sets 30% of the image pixels to either 0 or 1
with equal probability. Gaussian blur convolves the image using
a Gaussian kernel of σ = 2px, resulting in a blurred image. Sys-
tematic corruption is done by corrupting a subset of examples
from one class.

Note that the random corruption rates are over the full training
set, whereas class-conditional rates are with respect to the subset of
the training set with the corrupted label value. We also use Salt &
Pepper noise to evaluate non-deletion interventions in Section 6.9

6.1.3 Complaints. We evaluate complaints over three types of
aggregation queries shown in Table 1. The complaint specifies that
the aggregation output is either too high or too low, depending on
its value as compared to the ground truth.

6.1.4 Measures. We evaluate debugging quality by considering
the precision and recall of each ranked training point. Following
Rain [40], we summarize the quality of the top-k results using
AUCR. Let ri be the percentage of correctly identified corrupted
training examples in the top-i ranked points. AUCR computes the
average ri up to the true number of corruptions N, i.e. 1

N
∑N

i=1 ri.
The result is divided by its maximum value to derive a normalized
score in [0, 1]. We also evaluate offline and online runtimes.

6.1.5 Implementation. Rain andRain++ are implemented in JAX [20],
an automatic differentiation framework on top of XLA [35]. All
experiments are run on a Google Cloud n1-standard-8 machine
with one NVIDIA V100 GPU. Runtimes assume that the all code
required for the GPU acceleration is precompiled. This is possible

Q1 SELECT COUNT(*) FROM LEFT L, RIGHT R WHERE predict(L) = predict(R)

Q2 SELECT COUNT(*) FROM DWHERE predict(*)= {class}

Q3 SELECT AVG(predict(*)) FROM D

Table 1: Summary of query templates used in the experiments.

Dataset Corruption Rate
MNIST 1→ 7 10 - 40%

Fashion-MNIST pants→ sneakers 10 - 40%
CIFAR-10 automobile→ horse 10 - 40%

SST2 negative→ positive 10 - 40%
ADULT <50k$→ ≥50k$ 10 - 40%

Table 2: Summary of label corruptions.

Type Affected Classes Rate
Gauss. Blur (σ = 2) 1 (MNIST), pants (Fashion) 10 - 100%
Salt & Pepper (30%) auto (CIFAR) 70 - 100%
Gauss. Blur (σ = 2) All classes 10 - 40%
Salt & Pepper (30%)
Table 3: Summary of feature corruptions to image datasets.
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Figure 3: Q1 AUCR varying the number of CG iterations and eigen-
vectors for corruption rates 0.1-0.4.

for the gradients needed for hessian vector products, gradients for
each training example, and for streaming queries, because they are
known in advance. In general however, query gradients depend on
the user complaint and add additional overhead (8sec on unopti-
mized code)—deeper integration between Rain++ and NN compilers
like XLA to reduce this overhead is promising for future work.

6.2 Effects of small eigenvalues
Our first experiments illustrate how small eigenvalues of Hϑ∗ de-
grade complaint-based influence analysis.

We use the join-count query Q1 on MNIST, where digits 0 – 4
(LEFT) are joined with digits 5–9 (RIGHT). The ground truth query
should return 0. We evaluate Logistic Regression and CNN models
over class conditional label noise. The compaint specifies that the
output should be lower.

Figure 3 shows how the number of CG iterations (for Rain, solid
lines) and eigenvalues (for Rain++, dashed lines) affect debugging
quality; line colors depict corruption rate. Since the debugging
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Figure 4: Peak AUCR Rain vs Rain++

quality quickly reaches a peak AUCR (nearly 1 in all cases) we plot
the x-axis in log scale.

The location of the peak matches the eigenvalue spectra in Fig-
ure 2(left), where the normalized eigenvalues with respect to the
maximum eigenvalue is near-zero after 10 eigenvalues. Rain con-
verges to its peak more quickly because CG solves for any orthogo-
nal vectors to minimize the objective function, whereas Lanczos
used in Rain++ is restricted to eigenvectors of the Hessian. In-
creasing the number of iterations/eigenvalues beyond the peak
ultimately degrades AUCR due to numerical instability, as small
eigenvalues dominate the gradient analysis. As the number of iter-
ations/eigenvalues converges to the total number of model param-
eters d, we expect both approaches to be equivalent.

Non-convex models such as the CNN are typically trained to
reach an approximate local minima because it is faster to compute
and reduces the risk of overfitting. As a result, the Hessian can
potentially have small negative eigenvalues whose eigenvectors
correspond to directions that increase the loss. This is why Rain’s
AUCR fluctuates widely beyond the peak. In contrast, Rain++ uses
positive eigenvalues, and does not suffer from this instability.

Takeaway: Small and negative eigenvalues of the Hessian degrade
AUCR. Rain++ avoids these issues by only using the top k eigenvalues.

6.3 Baseline Comparison: Debugging Quality
Figure 4 compares the peak AUCR for Rain and Rain++ across all
models, image datasets, corruptions and their rates, and queries Q1
and Q2. For Q1, the join condition is over two disjoint subsets of
the inference dataset, so the aggregation is expected to be 0. For Q2,
we filter on ‘0’ digit, pants, and automobiles for the three datasets.
We vary the number of CG iterations/eigenvalues and report peak
AUCR. Each point compares the peak AUCR for both approaches.

The vast majority of points are near the gray y = x line, and
shows that the debugging qualities are comparable. Additionally,
the peak AUCR for both approaches is interspersed across [0, 1] indi-
cating that not all complaints are effective for all settings. We study
the conditions when a complaint can be expected to be effective for
debugging in Section 6.8.

Takeaway: Rain and Rain++ report comparable peak AUCR.

6.4 Number of eigenvalues
How does the number of eigenvalues affect AUCR, and how closely
does our heuristic for picking k in Section 4.3 get to the peak AUCR?
Figure 5 focuses on Rain++ and studies how AUCR varies with the
number of eigenvalues. We report the percentage of the peak AUCR,
averaged over all corruptions and queries Q1 and Q2. We exclude
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Figure 5: Percentage of peak AUCR for varying eigenvalues, aver-
aged over all corruption types and rates.

results when Rain++ is ineffective (peak AUCR ≤ 0.1) but the results
do not change if they are included; for SST2, we report results for
Q2 and for the ADULT on Q3.

Across different models for each dataset, the best choice for
k does not change significantly. Furthermore, our heuristic for
choosing k would select 10, 13, 2 and 6 for the four datasets, which
are near optimal. Interestingly, even though the LSTM model for
SST2 has the most parameters (3.4M), only two eigenvalues are
needed for complaint-based debugging.

Takeaway: Number of eigenvalues for peak AUCR is empirically
robust to model size for the same dataset, and is close to the number
of classes.

6.5 Baseline Comparison: Online Runtime
Figure 6 reports the end-to-end online runtimes to compute influ-
ence scores for all training examples in the MNIST and CIFAR10
datasets, for a Q1 complaint. We run Rain, and run Rain++ with-
out the query-gradient optimizations in Section 5. We use a single
corruption setting, since it does not affect runtime performance.

Rain++ reduces runtimes by over an order of magnitude even
when compared to a single CG iteration. Interestingly, runtimes for
CIFAR-10 are longer than forMNIST despite fewer model parame-
ters. CNNs and WRNs reuse the parameters for many operations in
their convolutional layers and thus their gradient computations is
more costly. Further, sequential layer operations in deeper models
like WRNs are more expensive because they are not parallelizable.

In this section we will compare the online time required by Rain
and Rain++ to return the scores for all training set interventions
given a complaint on the query output . This includes computing
∇ϑq(ϑ∗) and using it as a part of the influence calculations for Rain
and Rain++. Here we will focus on the performance improvements
of Rain++ without the use of the optimizations of Section 5.

Table 4 breaks down the runtimes into individual steps. Com-
puting ∇ϑq(ϑ∗) is common to both approaches, however Rain must
also computer CG, multiply ∇ϑq(ϑ∗)H–1

ϑ∗ with each ∇ϑℓ(ϑ∗, z) to
compute each training example’s score (Rain score). We report Rain
end-to-end time for 2 CG iterations for MNIST and 4 iterations
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Figure 6: Online complexity varying eigenvalues.

Rain-only

Model ∇ϑq(ϑ∗) CG iter Rain score Rain Rain++
LogReg 0.02 0.23 0.16 0.61 0.02

CNN 0.16 1.46 0.48 3.50 0.16
FeedForw 0.04 0.46 0.16 1.14 0.04
WRN-10 0.73 5.9 2.92 26.91 0.73
WRN-18 1.21 9.26 2.91 41.02 1.22
WRN-26 2.20 15.86 4.63 71.08 2.20

Table 4: Breakdown of online runtime (sec) for Rain and Rain++
(∇ϑq(ϑ∗) is shared). Rows 1 – 3 are for MNIST, 4 – 6 for CIFAR10.

for CIFAR-10, which typically achieves close to peak AUCR in our
experiments, and Rain++ using 20 eigenvalues. CG is the bottleneck
for Rain, whereas computing query gradients (∇ϑq(ϑ∗)) is the bot-
tleneck for Rain++ on complex models like WRNs. We will evaluate
query gradient optimizations next.

Takeaway: Rain++ reduces runtimes by orders of magnitude, but
is bottlenecked by computing the query gradient ∇ϑq(ϑ∗).

6.6 Query Gradient Optimizations
Figure 7 reports the runtime optimization benefits when the infer-
ence database is known apriori (Section 5.1). We focus on CIFAR-
10 since its results are representative. The horizontal line corre-
sponds to the unoptimized cost to compute the query gradient
∇ϑq(ϑ∗). Computing the gradient for each test example dominates
the query gradient runtime, so precomputing them reduces the
runtime by over an order of magnitude, and in effect, eliminates
the computational bottleneck. As a result, Rain++ can compute in-
fluence scores for all experimental settings in interactive time. For
WRN-26 on CIFAR-10, our suite of optimizations reduces
the end-to-end debugging time from over 1.18 minutes us-
ing Rain, to less than 10ms using Rain++: a 7000× reduction.

Figure 8 reports the incremental maintenance cost of ∆Q2 is run
over a streaming database that updates in varying update sizes. We
set k = 20. This is akin to the fashion monitoring use case described
in the introduction. We see that the incremental update cost varies
with the update size and is independent of the test database size.
In fact, updates sizes of up to one thousand records can update in
under 500ms because the records can be computed on the GPU in
one batch. Larger update sizes must be split and run on the GPU
in serial order. Smaller update sizes underutilize the GPU, which
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Figure 7: Query gradient optimization for CIFAR-10. Horizontal
line is unoptimized time.

is why the curve is flat. The interesting trade-off between latency
and throughput to best utilize the hardware is left for future work.

Takeaway: the query gradient optimizations leverage the known
inference database or query to ensure interactive debugging times.

6.7 Offline Precomputation Time
Figure 9 reports the offline costs to precompute the gradients for
the training set (Section 4) as well as the query gradients when the
inference database is known (Section 5.1). We vary the number of
eigenvalues to precompute, andmark k = 10with a vertical line. The
overall costs are quite reasonable—for instance, at k = 20, it takes
20 minutes to precompute gradients for the 26 layer WRN model.
This corresponds to the time for Rain to answer 15 Q1 complaints
using 2 CG iterations (see Table 4).

Takeaway: Offline preprocessing times are comparable to running
Rain for a dozen complaints. We believe it is reasonable enough to
perform as a preprocessing step before releasing a model.

6.8 When Are Complaints Useful?
Section 6.3 showed that correctly expressed complaints can still
be ineffective at training set debugging. In response, we seek to
understand the properties of a query complaint that affect AUCR.
Intuitively, we should expect that it depends on the relationship
between the corruption and how it affects the query. At the extreme,
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Figure 10: Effects of varying the number of relevant point com-
plaints, and the overall weight of irrelevant point complaints.

if the training corruptions only cause an ε ≈ 0 to the query’s result
value, then we should not expect it to be effective.

6.8.1 Initial Point Complaint Analysis. Our analysis will be based
on Equation (7), which decomposes q(ϑ) into a linear combination of
individual prediction probabilities pij(ϑ) for each inference record i
and class j. We can view pij as a point complaint that record i should
have label j. Intuitively a point complaint is likely to be effective for
debugging if the model mispredicts i and if removing the training
errors would lead to a correct prediction. To check this intuition,
we add class conditional label noise in CIFAR-10 (40% rate), and
point complaints where the corrupted model prediction differs from
the clean model’s prediction. These complaints indeed have a high
peak AUCR of 86%, agreeing with our intuition.

6.8.2 Revelant and Adversarial Point Complaints. We now use point
complaints to study query complaints. Query complaints are mod-
eled as linear combinations of point complaints that differ in terms
of their weights 𝜕f(P(ϑ∗))/𝜕pij. We expect that a query complaint
that assigns high weights to the “relevant” point complaints and low
weights to the “adversarial” point complaints should be effective at
debugging training errors.

Our experiment varies the weights that we assign to relevant
and adversarial point complaints. This is akin to a SUM aggregation
with a predicate where tuples that satisfy the predicate increase the
sum by an amount based on their attributes. Join aggregations have
this property as well. We define relevant complaints test points as
those whose true label is automobile, are mislabeled by the model
but are correctly predicted when the training errors are removed.
We define adversarial point complaints as test examples whose
true predicted labels are horse. The two types of point complaints
push the model in different directions. We use an equal number of
relevant and adversarial points, but give adversarial points Y× the
weight as relevant points, where Y ∈ [0, 100].

Figure 10 shows that debugging quality is insensitive to the
number of point complaints, but is highly sensitive to the ratio of
weights. When the ratio is ≤ 5×, Rain++ remains effective, however
the quality quickly degrades. This suggests that query complaints
are most effective when adversarial complaints do not dominate.
Note that an irrelevant point complaint pij—for instance, a test
point predicted with high confidence as bird for a query that filters
on horse—has negligible effects on debugging quality since their
contribution to the query gradient is 0.
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Figure 11: Relationship between the query output’s relative error
and debugging quality.

Figure 12: Small relative errors are difficult to visually detect. The
height of bars 3 and 6 are changed by 25% and 5%, respectively.

6.8.3 Magnitude of Query Errors. Although the above analysis
sheds light on when Rain++ can be effective, it relies on apriori
knowledge of relevant and irrelevant point complaints. However,
assuming this puts the cart before the horse, as the user only has
visibility of the query results. Thus, this experiment studies the
relationship between the magnitude of the query’s output error
wrt the correct query output, and debugging effectiveness. The
intuition is that larger query errors may be more likely to be due
to training example corruptions, rather than for spurrious reasons.

We use all models, the CIFAR-10 and MNIST datasets, and
vary the rate of class conditional label noise from 10% to 40%. We
sweep the possible queries that can be generated using Q1 and Q2
templates. For Q1, we set the left and right sides of the join to subsets
of the test database with different true labels (e.g., LEFT is digit ’5’,
RIGHT is digit ’9’ forMNIST). We use this procedure to generate
20 random query complaints. For Q2, we vary the filter condition
over all 10 classes for each dataset, resulting in 10 complaints per
dataset. This results in 300 complaints per dataset.

Figure 11 shows that, irrespective of the model architecture, the
peak AUCR improves as the relative query error increases. When
the query result increases beyond a threshold (red (25%) and blue
(5%) vertical lines), the peak AUCR tends to be near-1. This is an
encouraging result, because small relative differences are difficult
to see [4, 16, 34], and users are most likely to submit complaints
when errors are noticable. Figure 12 illustrates that it is difficult to
tell, even side by side, that the heights of bars 3 and 6 have been
respectively changed by 25% and 5%.

Among the corruptions that did not affect the query results, we
found cases where heavy corruptions did not have a significant
effect on model accuracy. For example, Salt & Pepper noise on even
50% of 1 digits of MNIST reduced test set accuracy by less than
1%. This strongly indicates that data debugging approaches that
are unaware of how the model is used downstream may spend
significant amounts of time cleaning training examples that do not
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Figure 13: Deletion is an ineffective intervention for addressing Salt
& Pepper noise; denoising via median filter is effective.

end up affecting model accuracy. The complaint driven approach
of Rain and Rain++ clearly avoids that.

Takeaway: Debugging quality is related to the weights of rele-
vant point complaints as compared to adversarial point complaints,
further larger query output differences correlate with higher peak
AUCR. Complaint driven debugging can reduce debugging effort by
prioritizing training set bugs that actually affect model accuracy.

6.9 Intervention Effectiveness
So far we have assumed that deleting the corrupted training exam-
ples is sufficient to resolve the user’s complaint. However, this is
not always the case, because feature errors such as Salt & Pepper
noise on images can also affect query results. For example, when
we corrupt 90% of the automobile training examples with Salt &
Pepper on CIFAR-10, WRN-26 predicts 847 automobiles in the
test database when the true count is 1000. However, deleting these
corrupted training examples will simply worsen the query output.
In addition, using a poor intervention also affects the effectiveness
of influence analysis. If deleting the corrupted training examples
does not change the model in a way that resolves the complaint,
then Rain and Rain++ will not rank those examples highly.

To illustrate this, our experiment corrupts the CIFAR-10 and
MNIST training sets with Salt & Pepper, and evaluates Rain++
using the deletion intervetion that we have used so far, and a denoise
intervention. The latter assigns each pixel the median value of its
neighboring pixels; this is effective for Salt & Pepper noise. We run
Q1 and Q2 using their default configurations. Figure 13 shows that
across all models, datasets, and queries, the deletion intervention is
completely ineffective. Although the query complaint specifies that
the query result should be higher, deleting the corrupted training
examples actually reduces the query results further. In contrast,
denoise has a peak AUCR consistently above 0.65 and converges to
1 as the corruption rate (of the corrupted class) increases to 100%.

Takeaway: Effective training example debugging relies on using the
appropriate intervention, and deletion is not always the most effective.
Further studies are needed to better understand the interaction between
data corruption, interventions, and complaints.

7 RELATEDWORK
Approximate Retraining: Approximate retraining has recently
attracted a lot of interest [15, 19, 41, 42]. While the alternative

approaches to influence analysis can sometimes provide more accu-
rate estimates, they are either significantly more expensive to run
or they are limited to convex models or even both. To the best of
our knowledge our work is the first one to study the problem of
accelerating approximate retraining based on offline computation
and to enable its interactive use for large neural networks.
Model compression and simplification:Model compression (ala
[10]) selects a subnetwork that may be up to 90% smaller than the
overparameterized originial. A similar area is model quantization,
which uses the trace of the hessian (average of eigenvalues) to de-
termine layer sensitivity and thus bound errors introduced due to
numerical quantization [6]. The speedups obtained by Rain++ go
beyond running Rain on a compressed or quantized model because
while k ≈ 20 eigenvectors are enough for debugging, 20 parameters
are not sufficient to classifyMNIST or CIFAR-10.
Gradient compression for distributed training: In distributed
training, the communication of gradients between workers can
easily dominate the training time. To reduce the communication
cost, prior work [44] proposed to compress gradient vectors using
PCA. Rain++ is calculating the eigenvectors of the Hessian and not
the principal components of the gradients. Observe however that
on Section 3, these two sets of vectors are closely related since the
training loss gradients span the top eigenvectors of the Hessian.

8 CONCLUSION
End-users and practitioners increasingly use models through infer-
ence queries, and interact with inference queries through interactive
visualization interfaces. Complaint-driven debugging allows users
to identify and understand how the model training data affected
the visualized data. To support user-facing interactivity, Rain++
develops a novel set of precomputation techniques that reduces
the online debugging latency by multiple orders of magnitude as
compared to the prior Rain system, while also scaling to models
with millions of parameters. Our analysis of when complaints are
effective finds evidence that Rain++ is more accurate when the
query output’s error is larger, which matches the settings when
users will identify errors in a visual interface.

One point we wish to emphasize is that training data debugging
can benefit considerably by taking the downstream uses of the
model into account—particularly query errors are not the primary
source of result errors. Complaint-driven debugging helps prioritize
erroneous training errors that directly affect downstream results
that matter to the user (or application), and helps avoid wasted
cleaning efforts on training data that does not affect the application.
While these ideas are well established in the area of domain adapta-
tion, which studies adapting model training to the test distribution
of interest, integrating downstream knowledge into training data
cleaning is still nascent.
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