
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards Complaint-driven MLWorkflow Debugging
Anonymous Author(s)

1 INTRODUCTION
Machine learning (ML) is increasingly a core part of a company’s

technical infrastructure, yet introduces considerable complexity.

It requires creating, executing, and managing ML workflows that

perform data extraction, labeling, model design and (re-)training,

inference, and using the predictions as part of downstream analytics

or applications. To facilitate this adoption, numerous ML platforms

(e.g., TFX [2], Michelangelo [14], FBLearner Flow [5], Overton [11],

MLFlow [10], and others [12]) have been proposed to manage and

automate parts of the ML life-cycle.

As a running example, CompanyX (name anonymized) is a com-

pany that manages email campaigns for their enterprise customers.

They train models to estimate user characteristics (e.g., churn like-

lihood, product affinities, etc). This empowers their customers to

use user attributes and these models to define and monitor user

cohorts used in email campaigns. Figure 1 shows the ML workflow

that trains a churn rate prediction model and uses it to count the

number of active users likely to churn, as well as the associated

query that performs inference using the trained model.

Unfortunately, the power of ML—that it adapts the model to

training data—also presents a risk due to the increased difficulty of

debugging when errors arise. Debugging ML workflows requires

reasoning about the correctness of the workflow logic, the input

datasets, the models, and interactions between them. In the Com-

panyX example, a customer is alarmed that the size of their user

cohort dropped considerably and wants to understand why. Yet

there can be a multitude of reasons: the query may be incorrect,

there may be errors in the Users or Logins tables, the model may

be misspecified, and there could be errors in the training data. In

short, developers are not just debugging the code, but also the data.
Traditional workflow and query debugging tools are capable of

helping debug query [4] and query data (e.g. the Users table in

CompanyX example) [9, 15] errors, however, they do not typically

address data errors that affect ML models. To solve this problem,

modern ML platforms provide ways to check the correctness of

the data. For instance, they can detect schema and data type mis-

matches [3, 13], and provide methods to define and detect dataset

distribution shifts between training, test, and/or production [3].

Further, systems such as [13] support “data unit tests” where de-

velopers can provide user-defined functions that compose a list of

primitive statistical data-checks. Unfortunately, these approaches

both place considerable burden on the developer to specify checks,

and are limited in their efficacy for several reasons.

First, it is a tall order to ask developers to specify the data con-

straints that will guarantee stable performance of their downstream

ML workflow. Even if an ML application developer knows the key

performance indicators for his application it may be difficult for

him to specify which features are critical to maintain their stabil-

ity. For example, CompanyX’s engineers may have an insight that

large cohort size drops in a single day are strong indications of

data-related errors. While, to directly specify this as a constraint

over the workflow output of Figure 1, it’s not clear how they can

�
σ σ

Training U, L

Mθ

γ

SELECT COUNT(*) 
FROM Users U JOIN Logins L

ON U.ID = L.ID
WHERE L.active_last_month AND

M θ.predict(U.*) = “Churn”

Q

why?

Weeks

C
ou

nt

Figure 1: CompanyX workflow and output visualization where the
user specifies surprising output values. Training and model infer-
ence steps in red.

specify which feature distribution shifts are important for each of

their clients.

Second, is that these approaches primarily focus on detecting
that a constraint was violated, but do not provide direct support

to debug the workflow and identify why the violation occurred.

This latter functionality is important because in comparison to data

constraint violations, workflow constraints involve ML inferences

and are thus harder to debug (see Section 2.1). For example, once

the CompanyX customer noticed the cohort drop, it is useful to

understand that it was due to a corrupt subset of training data

records that introduced bias in the model.

Third, is that errors (e.g., corrupt values, distribution shifts, miss-

ing data) in the data may not cause noticeable errors in the down-

stream workflow results. As a hypothetical example, the training

data for the churn prediction model may contain less spammer

users while they become frequent during serving, yet does not in-

troduce errors that affect the high life time value (LTV) user cohort
in ways that matter to the customers. In these cases, generic data

checks may generate many false positive alarms that reduce the

likelihood that true errors are responded to [3].

2 COMPLAINT-DRIVENWORKFLOW
DEBUGGING

To address the above limitations, this paper advocates for a complaint-
oriented approach towards specifying and debugging data errors in

ML workflows. The approach takes as input complaints specified
as constraints over the final or intermediate outputs of workflows

that use trained ML models. In addition, debuggers may specify

constraints, such as the operators or datasets in the workflow that

they suspect may have caused constraint violations. The approach

then outputs explanations in the form of specific operator(s) or data

subsets, and how they may be changed to address the constraint

violations. There are a number of benefits of this approach.

Easier Specification: Complaints are akin to traditional software

bug reports that ask the user to describe the problem that they

encountered. However, in this case, they are expressed as logical

statements over data records. In the CompanyX example, the con-

straint is simply that the cohort size should > 150.

Further, complaints can help different stakeholders collabora-

tively debug an ML workflow. This is because different teams are

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

often responsible for subsets of a ML workflow—a data modeling

team may focus on model design, an ML engineering team imple-

ments and manages the training and deployment of the models, and

end users execute queries that use themodel predictions. Similarly, a

given model may be used in multiple analysis workflows—different

customers make use the same ML models to define different user

cohorts and performance metrics. Each of these people have visibil-

ity into a portion of the full ML workflow, yet can contribute their

domain expertise to provide more accurate workflow debugging.

Useful Weak Signals: Complaints can provide weak signals that

can help debugging even in the absence of labels during serving. For

example, label noise during training could be easily detected if we

had access to the labels during serving. While exact serving labels

might be unknown, violation of application specific constraints

like the ones in CompanyX’s case can be used to detect label noise

phenomena. Another prominent case is debugging ML workflows

involvingmultiple models. Once again, the correct intermediate pre-

dictions in a multi-model ML workflow may be unknown. However,

violations of constraints on their aggregate outcome is a strong indi-

cation that at least one serving prediction is incorrect and thus they

can be used to initiate debugging. The same applies to workflows

that involve multiple predictions by a single model.

EnablingMLOps debugging:An automated tool for debugging of

complaints would be powerful even from an organizational perspec-

tive. The burden of monitoring the ML workflow usually behooves

members of MLOps teams. However, MLOps engineers may lack

the familiarity with the data, code or models used for a specific

ML workflow. Thus they are usually restricted to the detection of

potential bugs and need to delegate the debugging of any finding

to other teams. Unsure of the potential causes, they may need to

notify all teams involved in the workflow. Given an automated de-

bugging tool, the MLOps team can identify the part of the workflow

responsible for the violation and hand off to the relevant team.

2.1 Major Challenges
Despite the benefits complaint driven debugging can bring, it also

carries new challenges that are not obvious to solve.

Complaint Ambiguity For a given complaint there might not be

a singular way on how to address it. For example, if the a client of

CompanyX complaints about the sudden drop of his user cohort

size as in Figure 1, changing any of the negative churn predictions

for an active user to a positive one would address, at least partially,

the client’s complaint. We call complaints that can be resolved in

multiple ways ambiguous. Handling complaints that are ambiguous

allows us to make use of the weak signals complaints provide.

Component Heterogeneity Machine learning workflows often

contains multiple components that may be written in a variety

of libraries or even languages, and bear different properties like

differentiability and continuity that can help debugging [8, 16]. ML

workflow debugging should be able to handle all the components

simultaneously.

Component Entanglement Reasoning about the interactions of

different components, model based or not, is also a challenge. A

special case is debugging complaints involving multiple models.

In this case, fixes for each model can no longer be reasoned about

independently. As an example, a client of CompanyX could define

a selection predicate that involves predictions from two or more

models. The same complaint issued on top of the new workflow

is even more ambiguous as it is unclear which model caused the

cohort size drop.

Computational Complexity Often, individual components in-

side an ML workflow already exhibit high computational complex-

ity (e.g. table joins, feature extractions), let alone the ML workflow

as a collection of complex components. Given that ML workflow

debugging should be an interactive process, debugging tools must

take computation complexity into consideration.

While complaint driven debugging is not new neither in the

software engineering community [7] nor in theML community [16],

complaint driven debugging on ML workflow remains unsolved

due to these challenges. We believe solving these challenges is the

key to an effective yet efficient ML workflow debugging tool.

3 PRELIMINARY RESULTS FROM RAIN
Taking these challenges into consideration, we present Rain, a

complaint-driven debugging system for relational workflows that

leverage ML predictions (as in Figure 1). Users can execute an SPJA

query, where some of the expressions perform ML inference, and

specify value or existential constraints over attribute values in the

final or intermediate result sets. The system leverages techniques

from relational query provenance [1, 6] and ML interpretation [8]

to identify the set of training records that would most address the

constraint violations if they were deleted.

We conducted an array of experiments spanning various datasets,

training data corruptions, models, queries and complaints. To sim-

ulate training data corruptions, given a corruption predicate and a

corruption severity percentage α, α% of the training records that

satisfy the given predicate have their training labels flipped to an

incorrect label. A model trained on the corrupted data is then used

as part of a relational workflow. Simulating a user observing a sur-

prising query result, we input in Rain a complaint. For table outputs

the complaint can specify that a tuple should not exist in the result.

For numerical ones a complaint may specify the correct value or a

direction (greater, smaller). Rain returns a ranking where training

records ranked higher are deemed more likely to be corrupted. We

evaluated Rain both in terms of recall and precision.

Our experimental results consistently show that complaints can

be a powerful tool. A single complaint over an aggregate result can

be as effective at recovering corrupted training records as specify-

ing the labels of hundreds of individual serving predictions. This

suggests that complaints can save developers significant amount of

effort during debugging. At the same time, our experiments show

that complaints need not be very precise to work. When for ex-

ample training corruptions have caused an aggregate result to be

lower than its true value, a complaint does not need to specify the

exact correct value of the aggregate to be effective. A complaint

that just specifies that the aggregate should be higher can recover

a substantial number of corrupted training records. Additionally,

even when a single complaint is not enough to identify all the train-

ing corruptions, leveraging multiple complaints can yield results

that are better than using each complaint alone.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards Complaint-driven ML Workflow Debugging Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for aggregate queries. In

M. Lenzerini and T. Schwentick, editors, Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, June
12-16, 2011, Athens, Greece, pages 153–164. ACM, 2011.

[2] D. Baylor, E. Breck, H. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,

V. Jain, L. Koc, C. Y. Koo, L. Lew, C. Mewald, A. N. Modi, N. Polyzotis, S. Ramesh,

S. Roy, S. E. Whang, M. Wicke, J. Wilkiewicz, X. Zhang, and M. Zinkevich. TFX:

A tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017, pages 1387–1395. ACM,

2017.

[3] E. Breck, N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data validation

for machine learning, 2019.

[4] A. Chapman and H. Jagadish. Why not? In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, pages 523–534. ACM, 2009.

[5] Facebook. Introducing fblearner flow: Facebook’s ai backbone.

https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-

ai-backbone/, 2016. [Online; accessed 14-January-2020].

[6] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In L. Libkin,

editor, Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 11-13, 2007, Beijing, China, pages 31–40.
ACM, 2007.

[7] D. Jackson andM. Vaziri. Finding bugs with a constraint solver. In D. J. Richardson

and M. J. Harold, editors, Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA 2000, Portland, OR, USA, August 21-24, 2000, pages
14–25. ACM, 2000.

[8] P. W. Koh and P. Liang. Understanding black-box predictions via influence

functions. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages 1885–1894.
PMLR, 2017.

[9] A. Meliou and D. Suciu. Tiresias: the database oracle for how-to queries. In K. S.

Candan, Y. Chen, R. T. Snodgrass, L. Gravano, and A. Fuxman, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 337–348. ACM, 2012.

[10] MLflow. Mlflow - a platform for the machine learning lifecycle. https://mlflow.

org/, 2019. [Online; accessed 14-January-2020].

[11] C. Ré, F. Niu, P. Gudipati, and C. Srisuwananukorn. Overton: A data system for

monitoring and improving machine-learned products. CoRR, abs/1909.05372,
2019.

[12] S. Schelter, J.-H. Böse, J. Kirschnick, T. Klein, and S. Seufert. Automatically

tracking metadata and provenance of machine learning experiments. In Machine
Learning Systems workshop at NIPS, 2017.

[13] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Bießmann, and A. Grafberger.

Automating large-scale data quality verification. PVLDB, 11(12):1781–1794, 2018.
[14] Uber. Meet michelangelo: Uber’s machine learning platform. https://eng.uber.

com/michelangelo/, 2019. [Online; accessed 14-January-2020].

[15] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.

PVLDB, 6(8):553–564, 2013.
[16] X. Zhang, X. Zhu, and S. J. Wright. Training set debugging using trusted items.

In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 4482–4489. AAAI Press, 2018.

3

https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://mlflow.org/
https://mlflow.org/
https://eng.uber.com/michelangelo/
https://eng.uber.com/michelangelo/

	1 Introduction
	2 Complaint-Driven Workflow Debugging
	2.1 Major Challenges

	3 Preliminary Results from Rain
	References

